青藏工程走廊带多年冻土导热系数测试方法对比研究Comparative study on measurement methods of permafrost thermal conductivity of Qinghai-Tibet engineering corridor
崔福庆;刘志云;陈建兵;彭惠;张伟;王伟;
摘要(Abstract):
为分析不同测试方法对青藏工程走廊带内多年冻土导热系数测试结果的影响规律,指导冻土工程的热工设计和为走廊带内冻土导热系数的测试方法选择提供依据,搭建了稳态对比法、稳态热流计法、瞬态平面热源法和瞬态热线法冻(融)土导热系数试验测试平台,运用理论模型对稳态对比法测试过程中径向漏热量进行了估算,分别从测试结果准确性、适用土性类别和适用场合等方面对各类测试方法进行了对比。结果表明:稳态对比法试验结果与文献理论值相差较大,测试过程中径向漏热量无法忽略;稳态热流计法和瞬态平面热源法的测试结果与理论计算值具有较好的一致性,80%以上的测量值与理论值相对误差小于±15%;瞬态热线法测试结果整体偏小,冻、融土平均偏小17.75%和15.03%.考虑到瞬态平面热源法测试结果准确,测试时间短,样品需求量小,因而是一种合适的青藏工程走廊带冻(融)土导热系数大规模测试方法。
关键词(KeyWords): 多年冻土;导热系数;稳态热流法;瞬态平面热源法;瞬态热线法
基金项目(Foundation): 国家自然科学基金项目(51574037,41502292);; 中国交通建设股份有限公司应用基础研究项目(2018-ZJKJ-PTJS03)
作者(Author): 崔福庆;刘志云;陈建兵;彭惠;张伟;王伟;
Email:
DOI: 10.13800/j.cnki.xakjdxxb.2020.0518
参考文献(References):
- [1] 马巍,穆彦虎,谢胜波,等.青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J].地球科学进展,2017,32(5):459-464.MA Wei,MU Yan-hu,XIE Sheng-bo,et al.Thermal-mechanical influences and environmental effects of expressway construction on the Qinghai-Tibet permafrost engineering corridor[J].Advances in Earth Science,2017,32(5):459-464.
- [2] 陈建兵,刘志云,崔福庆,等.青藏高原工程走廊带多年冻土辨识及年平均地温预估模型[J].中国公路学报,2015,28(12):33-41.CHEN Jian-bing,LIU Zhi-yun,CUI Fu-qing,et al.Permafrost identification and annual mean ground temperatures prediction model for Qinghai-Tibet engineering corridor[J].China Journal of Highway and Transport,2015,28(12):33-41.
- [3] HAN Feng-lei,YU Wen-bing,YI Xin,et al.Thermal regime of paved embankment in permafrost regions along the Qinghai-Tibet engineering corridor[J].Applied Thermal Engineering,2016,108:330-338.
- [4] 陈建兵,刘志云,金龙.青藏公路冻土路基最大设计高度研究[J].西安科技大学学报,2012,32(2):198-203.CHEN Jian-bing,LIU Zhi-yun,JIN Long.Maximum design height of Qinghai-Tibetan highway embankment[J].Journal of Xi’an University of Science and Technology,2012,32(2):198-203.
- [5] 唐丽云,杨更社,让艳艳,等.水化热对冻土地区桩基热影响分析[J].西安科技大学学报,2011,31(1):28-32.TANG Li-yun,YANG Geng-she,RANG Yan-yan,et al.Effects of cement hydration heat on pile foundation in permafrost regions[J].Journal of Xi’an University of Science and Technology,2011,31(1):28-32.
- [6] LAI Yuan-ming,XU Xiang-tian,DONG Yuan-hong,et al.Present situation and prospect of mechanical research on frozen soils in china[J].Cold Regions Science and Technology,2013,87:6-18.
- [7] YU F,QI J L,YAO X L,et al.Degradation process of permafrost underneath embankments along Qinghai-Tibet highway:an engineering view[J].Cold Regions Science and Technology,2013,85:150-156.
- [8] ZHANG Z Q,WU Q B,JIANG G L,et al.Changes in the permafrost temperatures from 2003 to 2015 in the Qinghai-Tibet Plateau[J].Cold Regions Science and Technology,2019,169:102904.
- [9] 寇璟媛,滕继东,张升.冻土未冻水含量与孔径分布的试验探究[J].西安科技大学学报,2018,38(2):246-252.KOU Jing-yuan,TENG Ji-dong,ZHANG Sheng.Experimental study on the unfrozen water content and pore size distribution of frozen soil[J].Journal of Xi’an University of Science and Technology,2018,38(2):246-252.
- [10] ORAKOGLU M E,LIU J K,NIU F J.Experimental and modeling investigation of the thermal conductivity of fiber-reinforced soil subjected to freeze-thaw cycles[J].Applied Thermal Engineering,2016,108:824-832.
- [11] ZHANG N,WANG Z Y.Review of soil thermal conductivity and predictive models[J].International Journal of Thermal Science,2017,117:172-183.
- [12] DONG Y,MCCARTNEY J S,LU N.Critical review of thermal conductivity models for unsaturated soils[J].Geotechnical and Geological Engineering,2015,33(2):207-221.
- [13] BI J,ZHANG M Y,CHEN W W,et al.A new model to determine the thermal conductivity of fine-grained soils[J].International Journal of Heat and Mass Transfer,2018,123(8):407-417.
- [14] 何瑞霞,金会军,赵淑萍,等.冻土导热系数研究现状及进展[J].冰川冻土,2018,40(1):116-126.HE Rui-xia,JIN Hui-jun,ZHAO Shu-ping,et al.Review of status and progress of the study in thermal conductivity of frozen soil[J].Journal of Glaciology and Geocryology,2018,40(1):116-26.
- [15] 陈之祥,李顺群,夏锦红,等.冻土导热系数测试和计算现状分析[J].建筑科学与工程学报,2019,36(2):105-119.CHEN Zhi-xiang,LI Shun-qun,XIA Jin-hong,et al.Test and calculation situation analysis of thermal conductivity of frozen soil[J].Journal of Architecture and Civil Engineering,2019,36(2):105-119.
- [16] TAO Z X,ZHANG J S.The thermal conductivity of thawed and frozen soils with high moisture(ice)content[J].Journal of Glaciology and Geocryology,1983,5(2):75-80.
- [17] GOODRICH L E.Field measurements of soil thermal conductivity[J].Canadian Geotechnical Journal,1986,23(1):51-59.
- [18] 徐斅祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2010.XU Xue-zu,WANG Jia-cheng,ZHANG Li-xin.Frozen soil physics[M].Beijing:Science Press,2010.
- [19] LU Y,YU W B,HU D,et al.Experimental study on the thermal conductivity of aeolian sand from the Tibetan Plateau[J].Cold Regions Science and Technology,2018,146:1-8.
- [20] LI S Y,WANG C,SHI L H,et al.Statistical characteristics of the thermal conductivity of frozen clay at different moisture contents[J].Results in Physics,2019,13:102179.
- [21] ZHANG M Y,LU J G,LAI Y M,et al.Variation of the thermal conductivity of a silty clay during a freezing-thawing process[J].International Journal of Heat and Mass Transfer,2018,124:1059-1067.
- [22] ALRTIMI A,ROUAINIA M,MANNING D A C.An improved steady-state apparatus for measuring thermal conductivity of soils[J].International Journal of Heat and Mass Transfer,2014,72:630-636.
- [23] KOJIMA Y,HEITMAN J L,NOBORIO K,et al.Sensitivity analysis of temperature changes for determining thermal properties of partially frozen soil with a dual probe heat pulse sensor[J].Cold Regions Science and Technology,2018,151:188-195.
- [24] ZHAO X D,ZHOU G Q,JIANG X.Measurement of thermal conductivity for frozen soil at temperatures close to 0 ℃[J].Measurement,2019,140:504-510.
- [25] ANDERSLAND O B,LADANYI B.Frozen ground engineering[M].New York:John Wiley and Sons Inc.,2004.