低温液空储能系统液化流程模拟及其■分析Simulation and exergy analysis of liquefaction process in a cryogenic liquid air energy storage system
司派友;刘双白;刘青山;支长双;王维萌;刘迎文;何雅玲;
摘要(Abstract):
为了探索液化过程参数设计方法,利用Aspen Plus软件开展低温液空储能系统液化过程热力学特性的仿真研究,建立液化过程的模拟流程,并采用■分析方法研究了液化压力、节流入口温度、膨胀机入口温度对液化过程的影响规律,结合p-h图分析参数变化对膨胀过程工作特性的影响,获得液化过程各部件■损失随工作参数的变化情况。研究发现:液化压力的变化对节流阀及膨胀机■损失的影响较小,但较低的液化压力将导致液化过程冷箱热负荷降低,使得冷箱■损失降低;同时,较低的液化压力可有效减少膨胀机出口带液量,进一步提升液化过程的安全可靠性。当节流入口温度和膨胀机入口温度降低时,液化过程流量及出口总气相分量变小、冷箱换热量降低,使得节流阀和冷箱的■损失不断降低。液化过程的总■损失随着液化压力、节流入口温度、膨胀机入口温度的不断降低,其最大降幅分别为13.17%,51.02%和19.95%。结果表明:液化流程的参数优化设计可以有效降低系统能量损失、提升系统性能,有利于空分、天然气液化等低温系统及其设备的高效安全运行。
关键词(KeyWords): 液化空气储能;热力学分析;液化过程;■分析
基金项目(Foundation): 国家电网公司总部科技项目(52018K170028)
作者(Author): 司派友;刘双白;刘青山;支长双;王维萌;刘迎文;何雅玲;
Email:
DOI: 10.13800/j.cnki.xakjdxxb.2020.0422
参考文献(References):
- [1] 李品.中国能源供给安全影响因素研究[J].西安科技大学学报,2018,38(3):403-410.LI Pin.Influential factors of energy supply security of China[J].Journal of Xi'an University of Science and Technology,2018,38(3):403-410.
- [2] ZHAO H R,WU Q W,HU S J,et al.Review of energy storage system for wind power integration support[J].Applied Energy,2015,137:545-553.
- [3] LIU Q H,WANG X M,LI Z Y.The application of energy storage system in wind power integration[J].Advanced Materials Research,2013,724-725:630-634.
- [4] BAZMI AA,ZAHEDI G.Sustainable energy systems:Role of optimization modeling techniques in power generation and supply:a review[J].Renewable & Sustainable Energy Reviews,2011,15(8):3480-3500.
- [5] 荆平,徐桂芝,赵波,等.面向全球能源互联网的大容量储能技术[J].智能电网,2015,3(6):486-492.JING Ping,XU Gui-zhi,ZHAO Bo,et al.Large-scale energy storage technology for global energy internet[J].Smart Grid,2015,3(6):486-492.
- [6] ZHANG Y,YANG K,LI X,et al.The thermo-dynamic effect of air storage chamber model on advanced adiabatic compressed air energy storage system[J].Renewable Energy,2013,57:469-478.
- [7] SKOREK J,BANASIK K.Thermo-dynamics analysis of the compressed-air energy storage systems operation[J].Inzynieria Chemiczna I Procesowa,2006,27(1):187-200.
- [8] YANG K,ZHANG Y,LI X,et al.Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system[J].Energy Conversion and Management,2014,86:1031-1044.
- [9] 陈海生,刘金超,郭欢,等.压缩空气储能技术原理[J].储能科学与技术,2013,2(2):146-151.CHEN Hai-sheng,LIU Jin-chao,GUO Huan,et al.Technical principle of compressed air energy storage system[J].Energy Storage Science and Technology,2013,2(2):146-151.
- [10] CHINO K,ARAKI H.Evaluation of energy storage method using liquid air[J].Heat Transfer Asian Research,2000,29(5):347-57.
- [11] ANTONELLI M,DESIDERI U,GIGLIOLI R,et al.Liquid air energy storage:a potential low emissions and efficient storage system[J].Energy Procedia,2016,88:693-697.
- [12] GUIZZI G L,MANNO M,TOLOMEI L M,et al.Thermo-dynamic analysis of a liquid air energy storage system[J].Energy,2015,93:1639-1647.
- [13] 马砺,王伟峰,邓军,等.液态CO2防治采空区自燃应用工艺流程模拟[J].西安科技大学学报,2015,35(2):152-158.MA Li,WANG Wei-feng,DENG Jun,et al.Simulation of application technological process of liquid carbon dioxide for goaf fire prevention and control[J].Journal of Xi'an University of Science and Technology,2015,35(2):152-158.
- [14] 张小艳,赵珊媛,洪珊瑚.水在螺旋盘管内的换热及压降特性研究[J].西安科技大学学报,2014,34(2):174-179.ZHANG Xiao-yan,ZHAO Shan-yuan,HONG Shan-hu.Heat transfer and pressure drop characteristics for water flowing in spiral coil[J].Journal of Xi'an University of Science and Technology,2014,34(2):174-179.
- [15] 白芳,张沛,尹少武,等.低温液空储能流程模拟及优化[J].储能科学与技术,2017,6(4):753-757.BAI Fang,ZHANG Pei,YIN Shao-wu,et al.Simulation and optimization of cryogenic liquid energy storage process[J].Energy Storage Science and Technology,2017,6(4):753-757.
- [16] 缪华,张华.气体液化的历程[J].大学物理,2009,28(8):43-45,50.MIAO Hua,ZHANG Hua.The history of liquefaction[J].College Physics,2009,28(8):43-45,50.
- [17] AMEEL B,T'JOEN C,DE KERPEL K,et al.Thermo-dynamic analysis of energy storage with a liquid air Rankine cycle[J].Applied Thermal Engineering,2013,52(1):130-140.
- [18] ALLWOOD P J.The future role for energy storage in the UK[R].London:Energy Research Partnership,2011:1-47.
- [19] MORGAN R,NELMES S,GIBSON E,et al.Liquid air energy storage:analysis and first results from a pilot scale demonstration plant[J].Applied Energy,2015,137:845-853.
- [20] 赵明,梁俊宇,张晓磊,等.液态压缩空气储能系统空气节流液化过程热力性能[J].云南电力技术,2016,44(6):90-93.ZHAO Ming,LIANG Jun-yu,ZHANG Xiao-lei,et al.Thermo-dynamic properties study of CAES(liquid air energy storage system)air restrictor liquefaction process[J].Yunnan Electric Power,2016,44(6):90-93.
- [21] BARRON R F.Cryogenic systems(2nd Ed)[M].New York:Oxford University Press,1985.
- [22] 张辉,菅从光,张博,等.高温矿井冰制冷降温系统经济性[J].西安科技大学学报,2009,29(2):149-153.ZHANG Hui,JIAN Cong-guang,ZHANG Bo,et al.Eco-nomical performance of ice refrigeration and air-condi-tioning system in high temperature mine[J].Journal of Xi'an University of Science and Technology,2009,29(2):149-153.
- [23] 刘青山,葛俊,黄葆华,等.储能压力对液态压缩空气储能系统特性的影响[J].西安交通大学学报,2019,53(11):1-9.LIU Qing-shan,GE Jun,HUANG Bao-hua,et al.Influence of energy storage pressures on the characteristics of liquid air energy storage system[J] Journal of Xi'an Jiaotong University,2019,53(11):1-9.
- [24] 黄葆华,葛俊,倪经纬,等.深冷液化空气储能系统的关键因素影响规律[J].西安科技大学学报,2019,39(4):406-414.HUANG Bao-hua,GE Jun,NI Jing-wei,et al.Influence of key operation parameters on cryogenic liquefied air energy storage system[J].Journal of Xi'an University of Science and Technology,2019,39(4):406-414.
- [25] 马金亮.Aspen Plus软件模拟计算空分设备流程的修正[J].深冷技术,2005(3):19-21.MA Jin-liang.Amending the process analog computation of an air separation plant simulated by software Aspen Plus[J].Cryogenic Technology,2005(3):19-21.