煤矿机械在役轴类零件超声检测现状及展望Status and prospects of ultrasonic testing for in-service shaft components of coal mine machinery
董明;许如意;陈渊;张广明;万翔;
摘要(Abstract):
随着工业4.0和中国制造2025的全面推进,为应对装备制造业发展的新形势,确保质量为先,未来对煤矿机械智能检测与评价技术的需求将会越来越多。全国煤矿兴起智能化建设的高潮,煤矿装备将向着高转速、高功率方向发展,关键零部件的无损检测技术将面临新的挑战。总结了煤矿机械轴类零件无损检测现状,指出了在役轴非拆卸检测存在的问题,主要是因为缺陷回波、结构回波和转换回波在时域上混叠造成缺陷漏检,因为界面压力改变超声波的传播行为造成缺陷定量误差。分析了超声无损检测技术的发展现状和趋势,超声检测将向着无损定量评价、大数据分析、在役检测和计算超声学的方向发展,指出了煤矿机械在役轴类零件超声非折卸检测面临的关键难题,要对在役条件下超声回波产生机理、超声信号反卷积处理和基于大数据的缺陷智能评价这3方面进行深入研究,为缺陷信号提取和缺陷准确定量分析提供理论支持,实现在役轴类零件缺陷检测和剩余寿命预测,以确保煤矿机械安全运行。
关键词(KeyWords): 智能检测;中国制造2025;超声无损检测;煤矿机械;超声非拆卸检测
基金项目(Foundation): 国家自然科学基金项目(51705418,61674121);; 中国博士后科学基金项目(2019M653696);; 陕西省自然科学基础研究计划青年项目(2019JQ-801,2019JM-024)
作者(Author): 董明;许如意;陈渊;张广明;万翔;
Email:
DOI: 10.13800/j.cnki.xakjdxxb.2020.0504
参考文献(References):
- [1] 金宇飞.面对工业4.0的中国无损检测[J].无损检测,2016,38(5):58-62.JIN Yu-fei.Industry 4.0 and nondestructive testing of china[J].Nondestructive Testing,2016,38(5):58-62.
- [2] 王国法,杜毅博.德国工业4.0与中国煤机装备智能制造的发展[J].煤炭科学技术,2019,47(3):1-9.WANG Guo-fa,DU Yi-bo.German industry 4.0 and intelligent manufacturing development of Chinese coal machine equipment[J].Coal Science and Technology,2019,47(3):1-9.
- [3] 王国法,王虹,任怀伟,等.智慧煤矿2025情景目标和发展路径[J].煤炭学报,2018,43(2):295-305.WANG Guo-fa,WANG Hong,REN Huai-wei,et al.2025 scenarios and development path of intelligent coal mine[J].Journal of China Coal Society,2018,43(2):295-305.
- [4] 高士岗,高登彦,欧阳一博,等.中薄煤层智能开采技术及其装备[J].煤炭学报,2020,45(6):1997-2007.GAO Shi-gang,GAO Deng-yan,OUYANG Yi-bo,et al.Intelligent mining technology and its equipment for medium thickness thin seam[J].Journal of China Coal Society,2020,45(6):1997-2007.
- [5] 李首滨.智能化开采研究进展与发展趋势[J].煤炭科学技术,2019,47(10):102-110.LI Shou-bin.Progress and development trend of intelligent mining technology[J].Coal Science and Technology,2019,2019,47(10):102-110.
- [6] 马宏伟,王岩,杨林.煤矿井下移动机器人深度视觉自主导航研究[J].煤炭学报,2020,45(6):2193-2206.MA Hong-wei,WANG Yan,YANG Lin.Research on depth vision based mobile robot autonomous navigation in underground coal mine[J].Journal of China Coal Society,2020,45(6):2193-2206.
- [7] 沈功田,胡斌,徐永昌,等.中国无损检测2025科技发展战略[M].北京:中国质检出版社,2016.
- [8] 齐爱玲,白焕莉,马宏伟,等.一种基于ICA的机械缺陷超声信号提取方法[J].西安科技大学学报,2012,32(3):394-397.QI Ai-ling,BAI Huan-li,MA Hong-wei,et al.A method of mechanical defect ultrasonic signal extraction based on ICA[J].Journal of Xi’an University of Science and Technology,2012,32(3):394-397.
- [9] 王向宇,张伟伟,张雷,等.基于纵向超声导波的管道焊缝缺陷识别研究[J].西安科技大学学报,2018,38(6):945-951.WANG Xiang-yu,ZHANG Wei-wei,ZHANG Lei,et al.Pipe weld defects detection based on longitudinal ultrasonic guided wave[J].Journal of Xi’an University of Science and Technology,2018,38(6):945-951.
- [10] PRESTON K,KREUZER J L.Ultrasonic imaging using a synthetic holographic technique[J].Applied Physics Letters,1967,10(5):150-152.
- [11] FAN C,PAN M,LUO F.Ultrasonic broadband time-reversal with multiple signal classification imaging using full matrix capture[J].Insight:Non-Destructive Testing & Condition Monitoring,2014,56(9):487-491.
- [12] ROSENKRANTZ E,BOTTERO A,KOMATITSCH D,et al.A flexible numerical approach for non-destructive ultrasonic testing based on a time-domain spectral-element method:Ultrasonic modeling of Lamb waves in immersed defective structures and of bulk waves in damaged anisotropic materials[J].NDT & E international,2019,101:72-86.
- [13] FELICE M V,FAN Z.Sizing of flaws using ultrasonic bulk wave testing:A review[J].Ultrasonics,2018,88:26-42.
- [14] SIMONETTI F,FOX M.Experimental methods for ultrasonic testing of complex-shaped parts encased in ice[J].NDT & E International,2019,103:1-11.
- [15] YANG X,LIU Y,CHEN W,et al.A cylindrical traveling wave ultrasonic motor using bonded-type composite beam[J].Ultrasonics,2016,65:277-281.
- [16] XIE Y,YIN W,LIU Z,Peyton A.Simulation of ultrasonic and EMAT arrays using FEM and FDTD[J].Ultrasonics,2015,66:154-165.
- [17] DUAN J,ZHONG H,JING B,et al.Increasing axial resolution of ultrasonic imaging with a joint sparse representation model[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2016,63(12):2045-2056.
- [18] 焦敬品,马婷,刘德宇,等.基于脉冲压缩技术的相邻缺陷识别方法研究[J].仪器仪表学报,2014,35(7):1614-1621.JIAO Jing-pin,MA Ting,LIU De-yu,et al.Study on identification method of adjacent defects using pulse compression technique[J].Chinese Journal of Scientific Instrument,2014,35(07):1614-1621.
- [19] QI A L,ZGAG G M,MING D,et al.An artificial bee colony optimization based matching pursuit approach for ultrasonic echo estimation[J].Ultrasonics,2018,88:1-8.
- [20] 李萍,宋波,毛捷,等.深度学习在超声检测缺陷识别中的应用与发展[J].应用声学,2019,38(3):458-464.LI Ping,SONG Bo,MAO Jie,et al.Application and development of defect recognition using deep learning in ultrasonic testing[J].Journal of Applied Acoustics,2019,38(3):458-464.
- [21] TAIBAKHSH N,NIMA J Y,SHIN S R,et al.Convolutional neural networks for medical image analysis:Full training or fine tuning[J].IEEE Transactions on Medical Imaging,2016,35(5):1299-1312.
- [22] 雷亚国,贾峰,周昕,等.基于深度学习理论的机械装备大数据健康监测方法[J].机械工程学报,2015,51(21):49-56.LEI Ya-guo,JIA Feng,ZHOU Xin,et al.A deep learning-based method for machinery health monitoring with big data[J].Journal of Mechanical Engineering,2015,51(21):49-56.
- [23] 李奇,笪益辉,王彬,等.一种基于深度学习的超声导波缺陷重构方法[J/OL].固体力学学报:1-18[2020-09-02].https://doi.org/10.19636/j.cnki.cjsm42-1250/o3.2020.041.LI Qi,DA Yi-hui,WANG Bin,et al.Deep learning-assisted accurate defect reconstruction using Ultrasonic guided waves[J/OL].Chinese Journal of Solid Mechanics:1-18[2020-09-02].https://doi.org/10.19636/j.cnki.cjsm42-1250/o3.2020.041.